Mass Attenuation Coefficients of Human Body Organs using MCNPX Monte Carlo Code
نویسندگان
چکیده مقاله:
Introduction: Investigation of radiation interaction with living organs has always been a thrust area in medical and radiation physics. The investigated results are being used in medical physics for developing improved and sensitive techniques and minimizing radiation exposure. In this study, mass attenuation coefficients of different human organs and biological materials such as adipose, blood, bone, brain, eye lens, lung, muscle, skin, and tissue have been calculated. Materials and Methods: In the present study, Monte Carlo N-Particle eXtended (MCNP-X) version 2.4.0 was used for determining mass attenuation coefficients, and the obtained results were compared with earlier investigations (using GEometry ANd Tracking [GEANT4] and FLUKA computer simulation packages) for blood, bone, lung, eye lens, adipose, tissue, muscle, brain, and skin materials at different energies. Results: The results of this study showed that the obtained results from MCNP-X were in high accordance with the National Institute of Standards and Technology data. Conclusion: Our findings would be beneficial for use of present simulation technique and mass attenuation coefficients for medical and radiation physics applications.
منابع مشابه
Assessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
متن کاملStudying dose equivalents of radio-sensitive organs in head and neck region during nasopharynx proton therapy using Monte Carlo MCNPX code
In the present work, dose equivalents of radiosensitive organs in head and neck region have been calculated during nasopharynx proton therapy. For this purpose, a middle-size tumor was designed with the use of clinical information, and was then incorporated into the adult male ICRP phantom. According to the medical data, eight radiation paths around the neck were selected. After that, appropria...
متن کاملInvestigation of penetration depth of 63Ni beta spectrum in silicon by Monte Carlo method and using MCNPX code
In this study, the energy spectrum of beta-nickel 63 is considered as the total energy spectrum, average energy of the spectrum, and maximum spectral energy for analyzing the penetration depth of silicon. Monte Carlo calculations were carried out using a MCNPX code in a given geometry; in the following, Stopping-Power for electrons with different energies in silicon was calculated using the EST...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملEvaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA
Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 4
صفحات 229- 240
تاریخ انتشار 2017-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023